
Lax pair and Darboux transformation of a noncommutative U(N) principal chiral model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 11683

(http://iopscience.iop.org/0305-4470/39/37/021)

Download details:

IP Address: 171.66.16.106

The article was downloaded on 03/06/2010 at 04:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/37
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 11683–11696 doi:10.1088/0305-4470/39/37/021

Lax pair and Darboux transformation of a
noncommutative U (N ) principal chiral model

U Saleem and M Hassan

Department of Physics, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan

E-mail: usman physics@yahoo.com and mhassan@physics.pu.edu.pk

Received 8 March 2006, in final form 27 July 2006
Published 29 August 2006
Online at stacks.iop.org/JPhysA/39/11683

Abstract
We present a noncommutative generalization of the Lax formalism of the U(N)

principal chiral model in terms of a one-parameter family of flat connections.
The Lax formalism is further used to derive a set of parametric noncommutative
Bäcklund transformations and an infinite set of conserved quantities. From the
Lax pair, we derive a noncommutative version of the Darboux transformation
of the model.

PACS numbers: 11.10.Nx, 02.30.Ik

1. Introduction

During the last decade, there has been an increasing interest in the study of noncommutative
field theories (nc-FTs) due to their relation to string theory, perturbative dynamics, quantum
Hall effect, etc [1–16]. The noncommutative field theories can be constructed in different
settings. One method of construction is through Moyal deformation product or �-product
(Moyal product) [17]. A simple noncommutative field theory (nc-FT) can be obtained by
replacing the product of fields by their �-product. The noncommutativity of coordinates of the
Euclidean space RD is defined as

[xµ, xν] = iθµν,

where θµν is a second-rank antisymmetric real constant tensor known as a deformation
parameter. It has been shown that in general, noncommutativity of time variables leads to
non-unitarity and affects the causality of the theory [14, 15]. The �-product of two functions
in noncommutative Euclidean spaces is given by

(f � g)(x) = f (x)g(x) +
iθµν

2
∂µf (x)∂νg(x) + ϑ(θ2),

where ∂µ = ∂
∂xµ . These nc-FTs reduce to the ordinary or commutative field theories (FTs)

as the deformation parameter reduces to zero. There is also an increasing interest in the
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noncommutative extension of integrable field theories (nc-IFTs) [3–12]. Sometimes the
noncommutativity breaks the integrability of a theory; however there are some examples in
which integrability of a field theory is maintained [4]. In [4], a noncommutative extension
of U(N) principal chiral model (nc-PCM) has been presented and it is concluded that this
noncommutative extension gives no extra constraints for the theory to be integrable. The
non-local conserved quantities of nc-PCM have also been derived using the iterative method
of Brézin–Itzykson–Zinn–Zuber (BIZZ) [18] but no effort has been made so far to study the
Lax formalism of the nc-PCM and to derive conserved quantities and Darboux transformation
from it.

In this paper we present a Lax formalism of one-parameter family of transformations on
solutions of noncommutative U(N) principal chiral model. The Lax formalism further gives
a set of parametric noncommutative Bäcklund transformation (nc-BT) and a set of Riccati
equations. The Lax formalism can be used to derive a series of conserved quantities. The Lax
formalism is further used to develop the noncommutative version of Darboux transformation
for the nc-PCM. We expand the Noether currents in power series in deformation parameter
and obtain zeroth and first-order equations of motion and the conserved quantities.

2. Noncommutative principal chiral model

The action of U(N) for the nc-PCM is defined by1

S� = 1

2

∫
d2x Tr(∂+g

−1 � ∂−g), (2.1)

with constraints on the fields g(x+, x−):

g−1(x+, x−) � g(x+, x−) = g(x+, x−) � g−1(x+, x−) = 1,

where g(x+, x−) ∈ U(N),2 and g−1(x+, x−) stands for an inverse with respect to the �-
product.3 The U(N)-valued field g(x+, x−) is defined as

g(x+, x−) ≡ eiπaT
a

� = 1 + iπaT
a + 1

2 (iπaT
a)2

� + · · · ,
where πa is in the Lie algebra u(N) of the Lie group U(N) and T a, a = 1, 2, 3, . . . , N2, are
Hermitian matrices with the normalization Tr(T aT b) = −δab and are the generators of U(N)

in the fundamental representation satisfying the algebra

[T a, T b] = if abcT c,

where f abc are the structure constants of the Lie algebra u(N). For any X ∈ u(N), we write
X = XaT a and Xa = −Tr(T aX).

The action (2.1) is invariant under a global continuous symmetry

UL(N) × UR(N) : g(x+, x−) �→ u � g � v−1.

The associated Noether conserved currents of nc-PCM are

j�R
± = −g−1 � ∂±g, j�L

± = ∂±g � g−1,

1 The nc-PCM can also be obtained by dimensional reduction of noncommutative anti-self dual Yang–Mills equations
in four dimensions [13].
2 Here we have taken the global symmetry group as U(N), which has a simple noncommutative extension. There is
no noncommutative SU(N) because det(g1 � g2) �= det(g1)� det(g2). Also for any X, Y ∈ su(N) Lie algebra of the
Lie group SU(N), the commutator X � Y − Y � X is not traceless. The noncommutative extensions of SO(N) and
USP (N) have been constructed in [19–21] but the construction is a bit involved.
3 Our conventions are such that the two-dimensional coordinates are related by x± = 1

2 (x0 ± ix1) and
∂± = 1

2 (∂0 ± i∂1).
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which take values in the Lie algebra u(N), so that one can decompose the currents into
components j�

±(x+, x−) = j�a
± (x+, x−)T a . The equation of motion following from (2.1)

corresponds to conservation of these currents. The left and right currents satisfy the following
conservation equation:

∂−j�
+ + ∂+j

�
− = 0. (2.2)

The currents also obey the zero-curvature condition

∂−j�
+ − ∂+j

�
− + [j�

+, j �
−]� = 0, (2.3)

where [j�
+, j �

−]� = j�
+ � j�

− − j�
− � j�

+. Equations (2.2) and (2.3) can also be expressed as

∂−j�
+ = −∂+j

�
− = − 1

2 [j�
+, j �

−]�. (2.4)

Equations (2.2)–(2.4) hold for both j�L
± and j�R

± .

3. Lax pair and conserved quantities of nc-PCM

In order to develop a Lax formalism and construct infinitely many conserved quantities for
the nc-PCM, we define a one-parameter family of transformations on field g(x+, x−) in the
noncommutative space as

g → g(γ ) = u(γ ) � g � v(γ )−1,

where γ is a parameter and u(γ ), v(γ ) are matrices belonging to U(N). We choose the boundary
values u(1) = 1, v(1) = 1 or g(1) = g. The matrices u(γ ) and v(γ ) satisfy the following set of
linear equations:

∂±u(γ ) = 1
2 (1 − γ ∓1)j �L

± � u(γ ), (3.1)

∂±v(γ ) = 1
2 (1 − γ ∓1)j �R

± � v(γ ). (3.2)

In what follows, we shall consider right-hand currents and drop the superscript R on the current
to simply write j�R

± = j�
±. The compatibility condition of the linear system (3.2) is given by{

(1 − γ −1)∂−j�
+ − (1 − γ )∂+j

�
− +

(
1 − 1

2 (γ + γ −1)
)
[j�

+, j �
−]�

}
� v(γ ) = 0.

Under the one-parameter family of transformations, the Noether-conserved currents transform
as

j�
± �→ j

�(γ )
± = γ ∓1v(γ )−1�j�

± � v(γ ).

The one-parameter family of conserved currents j
�(γ )
± in the noncommutative space for any

value of γ : ∂+j
�(γ )
− + ∂−j

�(γ )
+ = 0. The linear system (3.2) can be written as

∂±v(x+, x−; λ) = A
�(λ)
± � v(x+, x−; λ), (3.3)

where the noncommutative fields A
�(λ)
± are given by

A
�(λ)
± = ∓ λ

1 ∓ λ
j�
±.

The parameter λ is a spectral parameter and is related to parameter γ by λ = 1−γ

1+γ
. The

compatibility condition of the linear system (3.3) is the �-zero-curvature condition[
∂+ − A�(λ)

+ , ∂− − A
�(λ)
−

]
�
≡ ∂−A�(λ)

+ − ∂+A
�(λ)
− +

[
A�(λ)

+ , A
�(λ)
−

]
�
= 0. (3.4)
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We have defined a one-parameter family of connections A
�(λ)
± which are flat. The Lax operators

can now be defined as

L
�(λ)
± = ∂± − A

�(λ)
± , (3.5)

which obey the following equations:

∂∓L
�(λ)
± = [

A
�(λ)
∓ , L

�(λ)
±

]
�
. (3.6)

The associated linear system (3.3) can be reexpressed as

∂0v(x0, x1; λ) = A
�(λ)
0 � v(x0, x1; λ), ∂1v(x0, x1; λ) = A

�(λ)
1 � v(x0, x1; λ), (3.7)

with the noncommutative connection fields A
�(λ)
0 and A

�(λ)
1 given by

A
�(λ)
0 = − λ

1 − λ2
(j �

1 + λj�
0 ), A

�(λ)
1 = − λ

1 − λ2
(j �

0 + λj�
1 ).

The compatibility condition of the linear system (3.7) is again the �-zero-curvature condition
for the fields A

�(λ)
0 and A

�(λ)
1 :[

∂0 − A
�(λ)
0 , ∂1 − A

�(λ)
1

]
�
≡ ∂1A

�(λ)
0 − ∂0A

�(λ)
1 +

[
A

�(λ)
0 , A

�(λ)
1

]
�
= 0.

The Lax operator is defined as

L
�(λ)
1 = ∂1 − A

�(λ)
1 ,

which obeys the Lax equation

∂0L
�(λ)
1 = [

A
�(λ)
0 , L

�(λ)
1

]
�
.

This equation gives the x0-evolution of the operator L
�(λ)
1 and is equivalent to an isospectral

eigenvalue problem. We have been able to show that the existence of a one-parameter
family of transformations and Lax formalism of PCM can be generalized to nc-PCM without
any constraints. This works straightforwardly as it does in the commutative case. The
one-parameter family of transformations thus gives rise to an infinite number of conserved
quantities and the Darboux transformation of generating solution of nc-PCM.

3.1. Local conserved quantities

It is straight forward to derive an infinite set of local4 conserved quantities from equation (2.4):

∂∓ Tr(j �
±)n = 0, (3.8)

where n is an integer and the first case n = 2 corresponds to the conservation of the energy–
momentum tensor. These conservation laws are associated with the totally symmetric invariant
tensors of the Lie algebra u(N) and the integers n turn out to be the exponents of u(N). This
is exactly what happens in the commutative case and these conserved quantities are shown to
be in involution with each other [22], in the commutative case.

We can also derive the local conserved quantities of nc-PCM from the linear
system (3.3) via noncommutative Bäcklund transformation (nc-BT) and Riccati equations. The
linear system (3.3) reduces to the following set of noncommutative Bäcklund transformation
(nc-BT):

±∂±(g−1 � g̃) = j̃ �
± − j�

±, (3.9)

4 The term ‘local’ in our discussion refers to its standard meaning. The conserved densities depend upon fields and
their derivatives but not on their integrals. The intrinsic non-locality of the Moyal deformation products appearing
due to the presence of derivatives to infinite order, persists in all our discussions. These conserved quantities are
in fact deformed local conserved quantities carrying with them the intrinsic non-locality due to noncommutativity.
Moreover, the leading terms in the perturbative expansion in θ are local.
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with constraint g−1 � g̃ + g̃−1 �g = 2λ−1I , where λ is a real parameter, g and g̃ are solutions of
equation of motion. The nc-BT given by equation (3.9) further gives rise to a set of compatible
noncommutative Riccati equations

∂±
(λ) = − λ

2(1 ∓ λ)
(j�

± + 
(λ) � j�
± � 
(λ) − 2λ−1j�

± � 
(λ) ∓ [
(λ), j�
±]�), (3.10)

where 
(λ) = g−1 � g̃. The linearization of the Riccati equation (3.10) gives rise to the linear
system (3.3). Equations (2.2), (2.3) and (3.10) can be used to give a series of conservation
laws:

(1 + λ)∂− Tr(
(λ) � j�
+) − (1 − λ)∂+ Tr(
(λ) � j�

−) = 0. (3.11)

Expanding 
(λ) as a power series in λ: 
(λ) = ∑∞
k=0 λk
k , one can generate λ-independent

conservation laws. It is not easier to solve the algebraic equations obtained recursively
from (3.11) when we substitute the expansion of 
(λ). The explicit form of conservation
law is therefore not quite transparent. It is, therefore, not straightforward to relate these local
conserved quantities with the ones associated with invariant tensors of u(N).

The existence of nontrivial higher spin local conserved quantities has important
implications regarding classical and quantum integrability of a field theory. In the two-
dimensional quantum field theory, their existence forces the multiparticle scattering matrix
to factorize into a product of two particle scattering matrices and eventually to be computed
exactly. The two particle S-matrix satisfies the Yang–Baxter equation [23–25]. We expect
that the local conserved quantities in nc-PCM will also give some important information
about the complex dynamics of the model. The higher spin local conserved quantities of the
type (3.8) are related to the W -algebra structure appearing in certain conformal field theories.
The deformed local conserved quantities would naturally lead to the study of deformation of
W -algebra [26].

3.2. Non-local conserved quantities

An infinite number of non-local5 conserved quantities can also be generated from the Lax
formalism of nc-PCM. We assume spatial boundary conditions such that the currents j�(γ )

vanish as x1 → ±∞. Equation (3.7) implies that v(x0,∞; λ) are time independent. The
residual freedom in the solution for v(x0,∞; λ) allows us to fix v(x0,∞; λ) = 1, the unit
matrix and we are then left with the x0-independent matrix-valued function

Q�(λ) = v(x0,∞; λ). (3.12)

Expanding Q�(λ) as power series in λ gives an infinite number of non-local conserved
quantities

Q�(λ) =
∞∑

k=o

λkQ�(k),
d

dx0
Q�(k) = 0. (3.13)

For the explicit expressions of the non-local conserved quantities, we write (3.7) as

v(x0, x1; λ) = 1 − λ

1 − λ2

∫ x1

−∞
dy(j�

0 (x0, y) − λj�
1 (x0, y)) � v(x0, y; λ). (3.14)

We expand the field v(x0, x1; λ) as power series in λ as

v(x0, x1; λ) =
∞∑

k=o

λkvk(x
0, x1), (3.15)

5 Here again the term ‘non-local’ refers to the meaning that the conserved densities depend on fields, their derivatives
and their integrals and they also contain intrinsic non-locality of the Moyal deformation.
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and compare the coefficients of powers of λ, we get a series of conserved non-local currents,
which upon integration give non-local conserved quantities. The first two non-local conserved
quantities of nc-PCM are

Q�(1) = −
∫ ∞

−∞
dy j�

0 (x0, y),

Q�(2) = −
∫ ∞

−∞
dy j�

1 (x0, y) +
∫ ∞

−∞
dy j�

0 (x0, y) �

∫ y

−∞
dz j�

0 (x0, z).

These conserved quantities are exactly the same as obtained in [4] using the noncommutative
iterative method of Brezin et al [18]. We now show that the procedure outlined above is
equivalent to the iterative construction of non-local conserved quantities of nc-PCM [4]. From
equations (3.3) and (3.15), we get

∂±
∞∑

k=o

λkvk(x
0, x1) = ±D±

∞∑
k=o

λkvk(x
0, x1),

where the covariant derivatives D± are defined as

D±v(k) = ∂±v(k) − j�
± � v(k) ⇒ [D+,D−]� = 0.

We can now define currents j
�(k)
± for k = 0, 1, . . . which are conserved in the noncommutative

space such that

∂−j�(k)
+ + ∂+j

�(k)
− = 0, ⇔ j

�(k)
± = ±∂±v(k).

An infinite sequence of conserved non-local currents can be obtained by iteration6

j
�(k+1)
± = D±v(k) ⇒ ∂−j�(k+1)

+ + ∂+j
�(k+1)
− = 0.

This establishes the equivalence of noncommutative Lax formalism and noncommutative
iterative construction. Here we have been able to use nc-Lax formalism of nc-PCM to
generate an infinite sequence of non-local conserved quantities and have been able to relate
them to the nc-iterative procedure.

Let us make a few comments about the algebra of these conserved quantities. In
the commutative case, the local conserved quantities based on the invariant tensors, all
Poisson commute with each other and with the non-local conserved quantities. The classical
Poisson brackets of non-local conserved quantities constitute classical Yangian symmetry
Y (u(N))[27]. The Yangian is related to the Yang–Baxter equation [28] showing the
consistency with the factorization of multiparticle S-matrix. The fundamental irreducible
representations of the Yangian correspond to particle multiplets and tensor product rules of
Yangian correspond to the Dorey’s fusing rules [29]. In the noncommutative case, we expect
that noncommutative Yangian appears in the model and its quantum version can shed some
light on the nonperturbative behaviour of the model. One way of investigating the algebra
of non-local conserved quantities is to develop a canonical formalism in the noncommutative
space and to derive noncommutative Poisson bracket current algebra of the model. In this
work we have not attempted to answer these questions and will return to these issues in some
later work.

6 The non-local conserved currents for the noncommutative models can also be constructed by using bidifferential
calculi and Hodge decomposition of the differential forms for elements in the algebra of the noncommutative torus
[8–10].
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4. Darboux transformation of nc-PCM

The Lax pair of nc-PCM obtained in the previous section can be further used to define Darboux
transformation of generating solutions of the linear system (3.2) of nc-PCM. We follow the
procedure of constructing Darboux transformation of PCM adopted in [30]. For convenience,
we write the linear system (3.2) as

∂+v(x+, x−, µ) = µ(2µ − 1)−1j�
+ � v(x+, x−, µ),

∂−v(x+, x−, µ) = µj�
− � v(x+, x−, µ),

(4.1)

where µ = 1−γ

2 and v(x+, x−, µ) is a non-degenerate N × N fundamental matrix solution of
system (4.1). The currents j�

+ and j�
− obey the following condition7:

j�
+ + j

�†
− = 0. (4.2)

Equations (2.2) and (2.3) can be written as the compatibility condition of the linear
system (4.1), that is,

µ(∂−j�
+ − ∂+j

�
− + [j�

+, j �
−]�) + (µ − 1)(∂−j�

+ + ∂+j
�
−) = 0.

In order to construct a noncommutative version of Darboux transformation, we proceed as
follows. v[1] be another matrix solution of the linear system (4.1). The onefold Darboux
transformation relates the solutions v[1] and v by the following equation:

v[1] = D(µ) � v, (4.3)

where D(µ),

D(µ) = I − µS, (4.4)

is the Darboux matrix and S(x+, x−) is the N ×N matrix function and I is the identity matrix.
The linear system for v[1] is given by

∂+v[1] = µ(2µ − 1)−1j�
+[1] � v[1],

∂−v[1] = µj�
−[1] � v[1],

(4.5)

where j�
+[1] and j�

−[1] satisfy equations (2.2) and (2.3). Applying ∂± on equation (4.3) and
equating the coefficients of different powers of µ, we get the following equations:

j�
+[1] = j�

+ + ∂+S, j�
−[1] = j�

− − ∂−S, (4.6)

and
∂+S � S − 2∂+S ≡ S � j�

+ − j�
+ � S = [S, j�

+]�,

∂−S � S ≡ j�
− � S − S � j�

− = −[S, j�
−]�.

(4.7)

One can solve equation (4.7) to get S(x+, x−) so that j�
+[1], j �

−[1] and v[1] are obtained
from (4.6), (4.3) and (4.4) respectively. An explicit expression for the matrix S(x+, x−) can
be found as follows.

Let us take N complex numbers µ1, µ2, . . . , µN ( �= 0, 1/2) which are not all same. Also
take N constant column vectors w1, w2, . . . , wN and construct a non-degenerate N ×N matrix

M = (v(µ1)w1, v(µ2)w2, . . . , v(µN)wN), (4.8)

with det M �= 0. Each column mα = v(µα)wα in the matrix M is a solution of the linear
system (4.1) for µ = µα , i.e.

∂+mα = µα(2µα − 1)−1j�
+ � mα, ∂−mα = µαj�

− � mα, (4.9)

7 The U(N) group is composed of all N × N matrices. Then for all g ∈ U(N), g† = g−1 where g† is the Hermitian
conjugate of g. A matrix P ∈ u(N) Lie algebra of U(N) if and only if P † + P = 0.



11690 U Saleem and M Hassan

where α = 1, 2, . . . , N . The matrix form of equations (4.9) will be

∂+M = j�
+ � M�(2� − 1)−1, ∂−M = j�

− � M�. (4.10)

Let us take the matrix

� = diag(µ1, µ2, . . . , µN) (4.11)

such that the matrix

S = M � �−1 � M−1, (4.12)

satisfies equation (4.7).
Our next step is to check that equation (4.12) is a solution of equation (4.7). In order to

show this, we first apply ∂+ on equation (4.12) to get

∂+S = (j �
+ � S − S � j�

+) � M � �(2� − 1)−1 � M−1,

or

∂+S � S − 2∂+S ≡ S � j�
+ − j�

+ � S = [S, j�
+]�.

Similarly, we apply ∂− on equation (4.12) to get

∂−S = j�
− − S � j�

− � S−1,

or

∂−S � S ≡ j�
− � S − S � j�

− = −[S, j�
−]�.

This shows that equation (4.12) is a solution of equation (4.7). Equations (4.3), (4.4) and (4.6)
define a Darboux transformation for the nc-PCM. In order to have j�

+[1], j �
−[1] ∈ u(N) we

need to show that

∂±(S − S†) = 0. (4.13)

In other words we want to make specific S to satisfy (4.13). This can be achieved if we choose

µα =
{

ρ1(α = 1, 2, . . . , k) (0 < k < N)

ρ2(α = k + 1, k + 2, . . . , N).
(4.14)

Now take ρ1 to be an imaginary number and define

ρ2 = ρ̄1

2ρ̄1 − 1
, (4.15)

with |2ρ1 − 1| �= 1 so that ρ1 �= ρ2. This has been defined for the later convenience.
Now we define column solutions for eigenvalues ρ1 and ρ2. Let m1,m2, . . . , mk and
mk+1,mk+2, . . . , mN be the column solutions of the linear system (4.1) for µ = ρ1 and
µ = ρ2 respectively, i.e.

mp = v(ρ1)wp, mq = v(ρ2)wq

(p = 1, 2, . . . , k, q = k + 1, k + 2, . . . , N).
(4.16)

We have to choose wα so that

m†
q � mp = 0, (p = 1, 2, . . . , k, q = k + 1, k + 2, . . . , N) (4.17)

at one point (say (0, 0)) and mα are linearly independent. We shall show that the matrix S
constructed from these values of µα and wα satisfies (4.13).
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First, we prove that (4.17) holds everywhere if it holds at one point. The proof of the
above identity (4.17) is as follows. Let us first calculate

∂−
(
m†

q � mp

) = ∂−m†
q � mp + m†

q � ∂−mp

= (∂+mq)
† � mp + m†

q � ∂−mp,

=
(

ρ2

2ρ2 − 1
j�

+ � mq

)†
� mp + m†

q � ∂−mp,

= −
(

ρ̄2

2ρ̄2 − 1

)
m†

q � j�
− � mp + m†

q � ∂−mp,

= −ρ1m
†
q � j�

− � mp + ρ1m
†
q � j�

− � mp,

= 0.

Similarly we can check

∂+
(
m†

q � mp

) = 0.

This means that (4.17) holds everywhere if it holds at one point, i.e.

∂±
(
m†

q � mp

) = 0. (4.18)

The m′
αs are linearly independent everywhere if they are linearly independent at one point

as (4.9) is linear. We have to choose mα so that they are linearly independent and (4.18) holds
everywhere.

From equation (4.12) we have

S � mp = 1

ρ1
mp, S � mq = 1

ρ2
mq. (4.19)

The Hermitian conjugate of equation (4.19) is given by

m†
p � S† = 1

ρ̄1
m†

p, m†
q � S† = 1

ρ̄2
m†

q . (4.20)

Therefore

m†
p � (S† − S) � mr =

(
1

ρ̄1
− 1

ρ1

)
m†

p � mr,

m†
q � (S† − S) � ms =

(
1

ρ̄2
− 1

ρ2

)
m†

q � ms

(4.21)

or

m†
q � (S† − S) � mp = 0,

m†
p � (S† − S) � mq = 0 (p, r = 1, 2, . . . , k, q, s = k + 1, k + 2, . . . , N).

(4.22)

From equation (4.15) we have

1

ρ1
− 1

ρ̄1
= 1

ρ2
− 1

ρ̄2
. (4.23)

Take

m
†
β � (S† − S) � mα = m

†
β �

(
1

ρ̄1
− 1

ρ1

)
� I � mα, (α, β = 1, 2, . . . , N) (4.24)

and 1
ρ1

− 1
ρ2

is real. Since the set {mα} consists of N linearly independent vectors

S† − S =
(

1

ρ̄1
− 1

ρ1

)
I, (4.25)
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therefore equation (4.25) implies that

j�
+[1] + j

�†
− [1] = j�

+ + j
�†
− − ∂+(S

† − S) = 0. (4.26)

This proves that j�
+[1] and j

�†
− [1] satisfy equation (4.2) for U(N). To summarize our results,

we write the onefold Darboux transformation as

(j �
+, j �

−, v) −→ (j �
+[1], j �

−[1], v[1]),

where

v[1] = (I − µS)v, j�
+[1] = j�

+ + ∂+S, j�
−[1] = j�

− − ∂−S,

and v[1] is the solution of the following linear system:

∂+v[1] = µ(2µ − 1)−1j�
+[1] � v[1], ∂−v[1] = µj�

−[1] � v[1],

such that the matrix S satisfies the following equations:

∂+S � S − 2∂+S = [S, j�
+]�, ∂−S � S = −[S, j�

−]�,

and the currents j�
+[1], j �

−[1] satisfy the following condition:

j�
+[1] + j

�†
− [1] = 0.

The twofold Darboux transformation is

(j �
+[1], j �

−[1], v[1]) −→ (j �
+[2], j �

−[2], v[2]),

where

v[2] = (I − µS[1])v[1],

j �
+[2] = j�

+[1] + ∂+S[1], j �
−[2] = j�

−[1] − ∂−S[1].

and v[2] is the solution of the following linear system:

∂+v[2] = µ(2µ − 1)−1j�
+[2] � v[2], ∂−v[2] = µj�

−[2] � v[2],

such that the matrix S[1] satisfies the following equations:

∂+S[1] � S[1] − 2∂+S[1] = [S[1], j �
+[1]]�, ∂−S[1] � S[1] = −[S[1], j �

−[1]]�,

and the matrix S[1] is given by

S[1] = M[1] � �−1 � M[1]−1,

with M[1] obeying

∂+M[1] = j�
+[1] � M[1]�(2� − 1)−1, ∂−M[1] = j�

−[1] � M[1]�,

and the currents j�
+[2], j �

−[2] satisfy the following condition:

j�
+[2] + j

�†
− [2] = 0.

The result can be generalized to obtain K-fold Darboux transformation

(j �
+[K − 1], j �

−[K − 1], v[K − 1]) −→ (j �
+[K], j �

−[K], v[K]),

where

v[K] = (I − µS[K − 1])v[K − 1],

j �
+[K] = j�

+[K − 1] + ∂+S[K − 1], j �
−[K] = j�

−[K − 1] − ∂−S[K − 1],

and v[K] is the solution of

∂+v[K] = µ(2µ − 1)−1j�
+[K] � v[K], ∂−v[K] = µj�

−[K] � v[K],
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such that the matrix S[K − 1] satisfies the following equations:

∂+S[K − 1] � S[K − 1] − 2∂+S[K − 1] = [S[K − 1], j �
+[K − 1]]�,

∂−S[K − 1] � S[K − 1] = −[S[K − 1], j �
−[K − 1]]�.

The matrix S[K − 1] is given by

S[K − 1] = M[K − 1] � �−1 � M[K − 1]−1,

such that M[K − 1] obeys

∂+M[K − 1] = j�
+[K − 1] � M[K − 1]�(2� − 1)−1,

∂−M[K − 1] = j�
−[K − 1] � M[K − 1]�,

where the currents j�
+[K], j �

−[K] satisfy the following condition:

j�
+[K] + j

�†
− [K] = 0.

This completes the iteration of Darboux transformation. From a given seed solution one can
generate the noncommutative multi-soliton solutions of the system. Such solutions have been
constructed for the noncommutative integrable U(N) sigma model in 2 + 1 dimensions by
employing the dressing method and their scattering properties have been investigated [31, 32].
In addition, these multi-soliton solutions correspond to D0-branes moving inside the D2-branes
in the open N = 2 fermionic string theory [33, 34]. For two-dimensional Euclidean sigma
models, the noncommutative multi-solitons and their moduli space have been constructed that
unifies different descriptions of Abelian and non-Abelian multi-solitons [35]. For nc-PCM
such solutions can be explicitly constructed either by Darboux transformation or by the dressing
method. One can also generalize the uniton method [36, 37] of constructing solutions for nc-
PCM. These non-trivial solutions of nc-PCM are presented for a given projection operator
in [38] where the construction of the unitons for nc-PCM is based on the noncommutative
generalization of the theorem due to Uhlenbeck [36, 37]. We shall return to the complete
description of the construction of uniton solutions of nc-PCM and proof of noncommutative
version of the theorem of Uhlenbeck in some later work.

5. Perturbative expansion

In this section we study the perturbative expansion of the noncommutative fields of nc-PCM
and compute the equation of motion and the conserved quantities up to first order in perturbative
expansion in noncommutativity parameter θ . We can expand the currents j± as power series
in θ . We expand the currents j± up to first order in θ :

j�
± = j

[0]
± + θj

[1]
± . (5.1)

By substituting the value of j�
± from equation (5.1) into equation of motion (2.2) and (2.3),

we get

∂−j [0]
+ + ∂+j

[0]
− = 0,

∂−j [1]
+ + ∂+j

[1]
− = 0,

∂−j [0]
+ − ∂+j

[0]
− +

[
j [0]

+ , j
[0]
−

] = 0,

∂−j [1]
+ − ∂+j

[1]
− +

[
j [1]

+ , j
[0]
−

]
+

[
j [0]

+ , j
[1]
−

] = − i

2

(
j [0]

++ j
[0]
−− + j

[0]
−−j [0]

++

) − i

8

[
j [0]

+ , j
[0]
−

]2
,

(5.2)

where j
[0]
±± = ∂±j

[0]
± . It is clear from the above equations that the currents j

[0]
± and j

[1]
± are

conserved, j
[0]
± is curvature free but j

[1]
± is not curvature free.
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The perturbative expansion of iterative construction gives the following results:

j
[0](k+1)
± = D

[0]
± v[0](k), ⇒ ∂−j [0](k+1)

+ + ∂+j
[0](k+1)
− = 0,

j
[1](k+1)
± = D

[0]
± v[1](k) − D

[1]
± v[0](k), ⇒ ∂−j [1](k+1)

+ + ∂+j
[1](k+1)
− = 0,

where

D
[0]
± v[0,1](k) = ∂±v[0,1](k) − j

[0]
± v[0,1](k),

D
[1]
± v[0](k) = j

[1]
± v[0](k) +

i

2

(
∂±j

[0]
± ∂∓ − ∂∓j

[0]
± ∂±

)
v[0](k).

From this analysis, it is obvious that the conservation of kth current implies the conservation
of (k + 1) th current at zeroth as well as first order of perturbation expansion in the parameter
of noncommutativity.

By substituting the value of j�
± from equation (5.1) into equation (3.8), we obtain first

four zeroth and first-order local conserved quantities

∂∓ Tr
(
j

[0]2
±

) = 0,

∂∓ Tr
(
j

[0]
± j

[1]
±

) = 0,

∂∓ Tr
(
j

[0]3
±

) = 0,

∂∓ Tr
(
j

[0]2
± j

[1]
± − 1

4j
[0]
± j

[0]
±±

[
j

[0]
± , j

[0]
∓

]
+ 1

4j
[0]
±±j

[0]
±

[
j

[0]
± , j

[0]
∓

]) = 0,

∂∓ Tr
(
j

[0]4
±

) = 0,

∂∓ Tr
(
j

[0]3
± j

[1]
± − 1

8j
[0]2
± j

[0]
±±

[
j

[0]
± , j

[0]
∓

]
+ 1

8j
[0]
±±j

[0]2
±

[
j

[0]
± , j

[0]
∓

]) = 0.

The conservation laws hold because of equation (5.2). The conserved holomorphic currents
∂∓Tr

(
j

[0]
±

)2
, ∂∓Tr

(
j

[0]
±

)3
, ∂∓Tr

(
j

[0]
±

)4
, . . . , are the usual local currents and the corresponding

local conserved quantities are

Q
[0]
±s =

∫ ∞

−∞
dx Tr

(
j

[0]
±

)n
,

where s = n − 1 represents the spin of the conserved quantity. The higher spin conserved
quantities are in involution with each other, i.e.{

Q[0]
+s ,Q

[0]
−r

} = 0, r, s > 0{
Q

[0]
±s ,Q

[0]
±r

} = 0.

The values of s are precisely the exponents modulo the Coxeter number of Lie algebra u(N).
These conservation laws are also related to the symmetric invariant tensors of the u(N) and
the zeroth-order contributions give the commuting conserved quantities with spins equal to the
exponents of the underlying algebra. We also expect that the first-order conserved quantities
are also in involution and the calculations involve the Poisson bracket current algebra of the
model which we have not been able to find at this stage.

Similarly we can expand conserved quantities

Q(1)[0] = −
∫ ∞

−∞
j

[0]
0 (x0, y) dy,

Q(1)[1] = −
∫ ∞

−∞
j

[1]
0 (x0, y) dy,

Q(2)[0] =
∫ ∞

−∞

(
−j

[0]
1 (x0, y) + j

[0]
0 (x0, y)

∫ y

−∞
j

[0]
0 (x0, z) dz

)
dy,

Q(2)[1] =
∫ ∞

−∞

(
−j

[1]
1 (x0, y)+ j

[1]
0 (x0, y)

∫ y

−∞
j

[0]
0 (x0, z) dz+ j

[0]
0 (x0, y)

∫ y

−∞
j

[1]
0 (x0, z) dz

)
dy.
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The conservation of these quantities can be proved by using equation (5.2). The non-local
conserved quantities Q(1)[0] and Q(2)[0] form the usual Yangian Y (u(N)). There are two
copies of this structure corresponding to right and left currents and therefore the algebra
is YL(u(N)) × YR(u(N)). These zeroth-order Yangian conserved quantities also Poisson
commutate with the zeroth-order local conserved quantities Q

[0]
±s i.e.{

Q
[0]
±s ,Q

(1)[0]
} = 0,

{
Q

[0]
±s ,Q

(2)[0]
} = 0.

The first-order contribution in the algebra of both local and non-local conserved quantities
can be investigated if the deformed canonical Poisson bracket algebra of deformed currents
is known. Note that the first-order correction to the first non-local conserved quantity is
an integral of non-local function of the fields. These corrections shall naturally modify the
Yangian structure of the non-local conserved quantities and as a result a Moyal-deformed
Yangian might appear, whose zeroth-order element must be the usual Yangian of the given Lie
algebra.

6. Conclusions

In this paper, we have analysed the Lax formalism of nc-PCM. In this generalization,
we have observed that noncommutative extension works straightforwardly resulting in a
noncommutative equation of PCM without any constraint appearing due to noncommutativity.
The Lax formalism of nc-PCM has been used to generate local as well as non-local conserved
quantities of the model and it has been shown that the Lax formalism of nc-PCM is equivalent
to the iterative procedure already used in [4]. Furthermore, the Lax formulism has been
used to derive K-fold Darboux transformation of the nc-PCM. The noncommutative Darboux
transformation can be used to construct non-trivial solutions of the nc-PCM and to study their
moduli-space dynamics. The present work can be extended to construct the uniton solutions
of nc-PCM and to investigate the algebra of local and non-local conserved quantities. Another
interesting direction to pursue is to look at the quantum conservation of the local and non-
local conserved quantities of the nc-PCM. The method of anomaly counting for the quantum
mechanical survival of the local conservation laws can also be applied to nc-PCM [27–29].
For the non-local conserved quantities the quantum Yangians can also be investigated for
the nc-PCM [39, 40]. It is also interesting to seek noncommutative extension of the Lax
formalism, local and non-local conserved quantities of supersymmetric PCM in the direction
adopted in [41, 42] for the commutative supersymmetric PCM.
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